Mobile & Distributed Database Management Systems

A transaction is a set of operations/transformations to be carried out on a database or relational dataset from one state to another. Once completed and validated to be a successful transaction, the ending result is saved into the database (Panda et al, 2011). Both ACID and CAP (discussed in further detail) are known as Integrity Properties for these transactions (Mapanga & Kadebu, 2013).

Mobile Databases

Mobile devices have become prevalent and vital for many transactions when the end-user is unable to access a wired connection. Since the end-user is unable to find a wired connection to conduct their transaction their device will retrieve and save information on the transaction either on a wireless connection or disconnected mode (Panda et al, 2011). A problem with a mobile user accessing and creating transactions with databases, is the bandwidth speeds in a wireless network are not constant, which if there is enough bandwidth connection to the end user’s data is rapid, and vice versa. There are a few transaction models that can efficiently be used for mobile database transactions: Report and Co-transactional model; Kangaroo transaction model; Two-Tiered transaction model; Multi-database transaction model; Pro-motion transaction model; and Toggle Transaction model. This is by no means an exhaustive list of transaction models to be used for mobile databases. 

According to Panda et al (2011), in a Report and Co-transactional Model, transactions are completed from the bottom-up in a nested format, such that a transaction is split up between its children and parent transaction. The child transaction once completed then feeds that information up to the chain until it reaches the parent. However, not until the parent transaction is completed is everything committed. Thus, a transaction can occur on the mobile device but not be fully implemented until it reaches the parent database. In the Kangaroo transaction model, a mobile transaction manager collects and accepts transactions from the end-user, and forwards (hops) the transaction request to the database server. Transaction made in this model is done by proxy in the mobile device, and when the mobile devices move from one location to the next, a new transaction manager is assigned to produce a new proxy transaction. The two-Tiered transaction model is inspired by the data replication schemes, where there is a master copy of the data but for multiple replicas. The replicas are considered to be on the mobile device but can make changes to the master copy if the connection to the wireless network is strong enough. If the connection is not strong enough, then the changes will be made to the replicas and thus, it will show as committed on these replicas, and it will still be made visible to other transactions. 

The multi-database transaction model uses asynchronous schemes, to allow a mobile user to unplug from it and still coordinate the transaction. To use this scheme, five queues are set up: input, allocate, active, suspend, and output. Nothing gets committed until all five queues have been completed. Pro-motion transactions come from nested transaction models, where some transactions are completed through fixed hosts and others are done in mobile hosts. When a mobile user is not connected to the fixed host, it will spark a command such that the transaction now needs to be completed in the mobile host. Though carrying out this sparked command is resource-intensive. Finally, the Toggle transaction model relies on software on a pre-determined network and can operate on several database systems, and changes made to the master database (global) can be presented different mobile systems and thus concurrency is fixed for all transactions for all databases (Panda et al, 2011).  

At a cursory glance, these models seem similar but they vary strongly on how they implement the ACID properties in their transaction (see table 1) in the next section.

ACID Properties and their flaws

Jim Gray in 1970 introduced the idea of ACID transactions, which provide four guarantees: Atomicity (all or nothing transactions), Consistency (correct data transactions), Isolation (each transaction is independent of others), and Durability (transactions that survive failures) (Mapanga & Kedebu, 2013, Khachana et al, 2011; Connolly & Begg, 2015). ACID is used to assure reliability in a database system, due to a transaction, which changes the state of the data in the database. This approach is perfect for small relational centralized/distributed databases, but with the demand to make mobile transactions, big data, and NoSQL, the ACID may be a bit constricting. The web has independent services connected relationally, but hard to maintain (Khachana et al, 2011). An example of this is booking a flight for a CTU Doctoral Symposium. One purchases a flight, but then also may need another service that is related to the flight, like ground transportation to and from the hotel, the flight database is completely different and separate from the ground transportation system, yet sites like Kayak.com provide the service of connecting these databases and providing a friendly user interface for their customers. Kayak.com has its own mobile app as well. So taking this example further we can see how ACID, perfect for centralized databases, may not be the best for web-based services. Another case to consider is, mobile database transactions, due to their connectivity issues and recovery plans, the models aforementioned cover some of the ACID properties (Panda et al, 2011). This is the flaw for mobile databases, through the lens of ACID.

Table 1

Mobile Distributed Database Management Systems Transaction Models vs ACID.

ModelAtomicityConsistencyIsolationDurability
Report & Co-transaction modelYesYesYesYes
Kangaroo transaction modelMaybeNoNoNo
Two-tiered transaction modelNoNoNoNo
Multi-database Transaction modelNoNoNoNo
Pro-motion ModelYesYesYesYes
Toggle transaction modelYesYesYesYes

Note: A subset of the information found in Panda et al (2011) dealing with mobile database system transaction models and how they use or do not use the ACID properties.

CAP Properties and their trade-offs

CAP stands for Consistency (just like in ACID, correct all data transactions and all users see the same data), Availability (users always have access to the data), and Partition Tolerance (splitting the database over many servers do not have a single point of failure to exist), which was developed in 2000 by Eric Brewer (Mapanga & Kadebu, 2013; Abadi, 2012; Connolly & Begg, 2015). These three properties are needed for distributed database management systems and are seen as a less strict alternative to the ACID properties by Jim Gary. Unfortunately, you can only create a distributed database system using two of the three systems so a CA, CP, or AP systems. 

CP systems have a reputation of not being made available all the time, which is contrary to the fact. 

Availability in a CP system is given up (or out-prioritized) when Partition Tolerance is needed. Availability in a CA system can be lost if there is a partition in the data that needs to occur (Mapanga & Kadebu, 2013). Though you can only create a system that is the best in two, that doesn’t mean you cannot add the third property in there, the restriction only talks applies to priority. In a CA system, ACID can be guaranteed alongside Availability (Abadi, 2012)Partitions can vary per distributed database management systems due to WAN, hardware, a network configured parameters, level of redundancies, etc. (Abadi, 2012). Partitions are rare compared to other failure events, but they must be considered. But, the question remains for all database administrators: 

Which of the three CAP properties should be prioritized above all others? Particularly if there is a distributed database management system with partitions considerations. Abadi (2012) answers this question, for mission-critical data/applications, availability during partitions should not be sacrificed, thus consistency must fall for a while.

Amazon’s Dynamo & Riak, Facebook’s Cassandra, Yahoo’s PNUTS, and LinkedIn’s Voldemort are all examples of distributed database systems, which can be accessed on a mobile device (Abadi, 2012). 

However, according to Abadi (2012), latency (similar to Accessibility) is critical to all these systems, so much so that a 100ms delay can significantly reduce an end user’s future retention and future repeat transactions. Thus, not only for mission-critical systems but for e-commerce, is availability during partitions key.

Unfortunately, this tradeoff between Consistency and Availability arises due to data replication and depends on how it’s done. 

According to Abadi (2012), there are three ways to do data replications: data updates sent to all the replicas at the same time (high consistency enforced); data updates sent to an agreed-upon location first through synchronous and asynchronous schemes (high availability enforced dependent on the scheme); and data updates sent to an arbitrary location first through synchronous and asynchronous schemes (high availability enforced dependent on the scheme). According to Abadi (2012), PNUTS sends data updates sent to an agreed-upon location first through asynchronous schemes, which improves Availability at the cost of Consistency. Whereas, Dynamo, Cassandra, and Riak send data updates sent to an agreed-upon location first through a combination of synchronous and asynchronous schemes. 

These three systems, propagate data synchronously, so a small subset of servers and the rest are done asynchronously, which can cause inconsistencies. All of this is done to reduce delay to the end-user. 

Going back to the Kayak.com example from the previous section, consistency in the web environment should be relaxed (Khachana et al, 2011). Further expanding on Kayak.com, if 7 users wanted to access the services at the same time they can ask which of these properties should be relaxed or not. One can order a flight, hotel, and car, and enforce that none is booked until all services are committed. Another person may be content with whichever car for ground transportation as long as they get the flight times and price they want. This can cause inconsistencies, information being lost, or misleading information needed for proper decision analysis, but systems must be adaptable (Khachana et al, 2011). They must take into account the wireless signal, their mode of transferring their data, committing their data, and load-balance of the incoming request (who has priority to get a contested plane seat when there is only one left at that price). At the end of the day, when it comes to CAP, Availability is king. It will drive business away or attract it, thus C or P must give, to cater to the customer. If I were designing this system, I would run an AP system, but conduct the partitioning when the load/demand on the database system will be small (off-peak hours), so to give the illusion of a CA system (because Consistency degradation will only be seen by fewer people). Off-peak hours don’t exist for global companies or mobile web services, or websites, but there are times throughout the year where transaction to the database system is smaller than normal days. So, making around those days is key. For a mobile transaction system, I would select a pro-motion transaction system that helps comply with ACID properties. Make the updates locally on the mobile device when services are not up, and set up a queue of other transactions in order, waiting to be committed once wireless service has been restored or a stronger signal is sought. 

Resources

  • Abadi, D. J. (2012). Consistency tradeoffs in modern distributed database system design: CAP is only part of the story. IEEE Computer Society, (2), 37-42.
  • Connolly, Thomas & Begg, Carolyn (2015). Database Systems: A Practical Approach to Design, Implementation, and Management, 6th Edition. Pearson Education, Inc., publishing as Addison-Wesley, Upper Saddle River, New Jersey.
  • Khachana, R. T., James, A., & Iqbal, R. (2011). Relaxation of ACID properties in AuTrA, The adaptive user-defined transaction relaxing approach. Future Generation Computer Systems, 27(1), 58-66.
  • Mapanga, I., & Kadebu, P. (2013). Database Management Systems: A NoSQL Analysis. International Journal of Modern Communication Technologies & Research (IJMCTR), 1, 12-18.
  • Panda, P. K., Swain, S., & Pattnaik, P. K. (2011). Review of some transaction models used in mobile databases. International Journal of Instrumentation, Control & Automation (IJICA), 1(1), 99-104.

Adv DB: Web DBMS Tools

Developers need tools to design web-DBMS interfaces for dynamic use of their site for either e-commerce (Amazon storefront), decision making (National Oceanographic and Atmospheric Administration weather forecast products), or forgather information (Survey Monkey), etc.  ADO.NET and Fusion Middleware are two of many tools and middleware that can be used to develop web-to-database interaction (MUSE, 2015).

ADO.NET (Connolly & Begg, 2014)

Microsoft’s approach to a web-centric middleware for the web-database interface, which provides compatibility with .NET class library, support to XML (used excessively as an industry standard), and connection/disconnection data access.  It has two tiers: dataset (data table collection, XML) and .NET Framework Data Provider (connection, command, data reader, data adapter, for the database).

Pros: Built on standards to allow for non-Microsoft products to use it.  Automatically creates XML interfaces for the application to be turned into a Web Operable Service.  Even the .NET classes conform to XML and other standards.  Other development tools for further expanding the GUI set can be added and bound to the Web Service.

Cons: According to the Data Developer Center website (2010),  with connected data access, you must explicitly manage all database resources, and not doing so can cause resource mismanagement (connections are never freed up).  Other functions in certain classes are missing, like mapping to table-valued functions in the Entity Framework.

Fusion Middleware (Connolly & Begg, 2014):

Oracle’s approach to a web-centric middleware for the web-database interface, which provides development tools, business intelligence, content management, etc.  It has three tiers: Web (using Oracle web cache and HTTP Server), Middle Tier (apps, security services, web logic servers, other remote servers, etc.), and data (the database).

Pros: Scalable. It is based on a Java Platform (full Java EE 6 implementation).  Allows Apache modules like those that route HTTP Requests, for store procedures on a database server, for transparent single sign-on, SHTTP, etc. Their Business Intelligence function allows you to extract and analyze data to create reports and charts (statically or dynamically) for decision analysis.

Cons: The complexity of their system along with their new approach creates a steep learning curve, and requires skilled developers.

The best approach for me was Microsoft: If you want to connect to many other Microsoft applications, this is one route to consider.  It has a nice learning curve (from personal experience).  Another aspect, was when I was building apps for the Library at the University of Oklahoma, the DBAs and I didn’t really like the grid view basic functionalities, so we exploited the aforementioned pro of interfacing with third-party codes, to create more interactive table view of our data.  What is also nice is that our data was on an Oracle database, and all we had to do was switch the pointer from SQL to Oracle, without needed to change the GUI code.

Resources

Adv DB: Indexes for query optimization

Information sought in a database can be extracted through a query.  However, the bigger the database, the slower the processing time it would take for a query to go through, hence query optimization techniques are conducted.  Another reason for optimization can occur with complex queries operations.

Rarely see that an index is applied on every column in every table

Using indices for query optimization is like using the index at the back of the book to help you find the information/topic you need quickly. You could always scan all the tables just like you can read the entire book, but that is not efficient (Nevarez, 2010).  You can use an index seek (ProductID = 77) or an index scan via adding an operand (ABS(ProductID) = 77), though a scan takes up more resources than a seek.  You can combine them (ProductID = 77 AND ABS(SalesOrderID) = 12345), where you would seek via ProductID and scan for SalesOrderID.  Indexing can be seen as an effective way to optimize your query, besides other methods like applying heuristic rules or ordering the query operations for efficient use of resources (Connolly & Begg, 2014).  However, indices not being used have no use to us, as they take up space on our system (Nevarez, 2010) which can slow down your operations.  Thus, they should be removed.  That is why indexing shouldn’t be applied to every column in every table.  Indexing in every column may not be necessary because it can also depend on the size of the table, indexing is not needed if the table is 3*4, but may be needed if a table is 30,000 * 12.

Thoughts on how to best manage data files in a database management system (DBMS)

Never assume, verify any changes you make with cold hard data. When considering how best to manage a database one must first learn if the data files or the data within the database are dynamic (users create, insert, update, delete regularly) or static (changes are minimal to non-existant) (Connolly & Begg, 2014).  Database administrators need to know when to fine-tune their databases with useful indices on tables that are widely used and turn off those that are not used at all.  Turning off those that are not used at all will saving space, optimize updated functions, and improving resource utilization (Nevarez, 2010). Knowing this will help us understand the nature of the database user. We can then re-write queries that are optimized via correct ordering of operations, removing unnecessary loops and do joins instead, how join, right join or left join properly, avoiding the wildcard (*) and call on data you need, and ensure proper use of internal temporary tables (those created on a server while querying).  Also, when timing queries, make sure to test the first run against itself and avoid the accidental time calculation which includes data stored in the cache. Also, caching your results, using the cache in your system when processing queries is ideal.  A disadvantage of creating too many tables in the same database is slower interaction times, so creating multiple databases with fewer tables (as best logic permits) may be a great way to help with caching your results (MySQL 5.5 Manual, 2004).

Resources