Compelling topics on analytics of big data

  • Big data is defined as high volume, high variety/complexity, and high velocity, which is known as the 3Vs (Services, 2015).
  • Depending on the goal and objectives of the problem, that should help define which theories and techniques of big data analytics to use. Fayyad, Piatetsky-Shapiro, and Smyth (1996) defined that data analytics can be divided into descriptive and predictive analytics. Vardarlier and Silaharoglu (2016) agreed with Fayyad et al. (1996) division but added prescriptive analytics. Thus, these three divisions of big data analytics are:
    • Descriptive analytics explains “What happened?”
    • Predictive analytics explains “What will happen?”
    • Prescriptive analytics explains “Why will it happen?”
  • The scientific method helps give a framework for the data analytics lifecycle (Dietrich, 2013; Services, 2015). According to Dietrich (2013), it is a cyclical life cycle that has iterative parts in each of its six steps: discovery; pre-processing data; model planning; model building; communicate results, and
  • Data-in-motion is the real-time streaming of data from a broad spectrum of technologies, which also encompasses the data transmission between systems (Katal, Wazid, & Goudar, 2013; Kishore & Sharma, 2016; Ovum, 2016; Ramachandran & Chang, 2016). Data that is stored on a database system or cloud system is considered as data-at-rest and data that is being processed and analyzed is considered as data-in-use (Ramachandran & Chang, 2016).  The analysis of real-time streaming data in a timely fashion is also known as stream reasoning and implementing solutions for stream reasoning revolve around high throughput systems and storage space with low latency (Della Valle et al., 2016).
  • Data brokers are tasked collecting data from people, building a particular type of profile on that person, and selling it to companies (Angwin, 2014; Beckett, 2014; Tsesis, 2014). The data brokers main mission is to collect data and drop down the barriers of geographic location, cognitive or cultural gaps, different professions, or parties that don’t trust each other (Long, Cunningham, & Braithwaite, 2013). The danger of collecting this data from people can raise the incidents of discrimination based on race or income directly or indirectly (Beckett, 2014).
  • Data auditing is assessing the quality and fit for the purpose of data via key metrics and properties of the data (Techopedia, n.d.). Data auditing processes and procedures are the business’ way of assessing and controlling their data quality (Eichhorn, 2014).
  • If following an agile development processes the key stakeholders should be involved in all the lifecycles. That is because the key stakeholders are known as business user, project sponsor, project manager, business intelligence analyst, database administers, data engineer, and data scientist (Services, 2015).
  • Lawyers define privacy as (Richard & King, 2014): invasions into protecting spaces, relationships or decisions, a collection of information, use of information, and disclosure of information.
  • Richard and King (2014), describe that a binary notion of data privacy does not Data is never completely private/confidential nor completely divulged, but data lies in-between these two extremes.  Privacy laws should focus on the flow of personal information, where an emphasis should be placed on a type of privacy called confidentiality, where data is agreed to flow to a certain individual or group of individuals (Richard & King, 2014).
  • Fraud is deception; fraud detection is needed because as fraud detection algorithms are improving, the rate of fraud is increasing (Minelli, Chambers, &, Dhiraj, 2013). Data mining has allowed for fraud detection via multi-attribute monitoring, where it tries to find hidden anomalies by identifying hidden patterns through the use of class description and class discrimination (Brookshear & Brylow, 2014; Minellli et al., 2013).
  • High-performance computing is where there is either a cluster or grid of servers or virtual machines that are connected by a network for a distributed storage and workflow (Bhokare et al., 2016; Connolly & Begg, 2014; Minelli et al., 2013).
  • Parallel computing environments draw on the distributed storage and workflow on the cluster and grid of servers or virtual machines for processing big data (Bhokare et al., 2016; Minelli et al., 2013).
  • NoSQL (Not only Structured Query Language) databases are databases that are used to store data in non-relational databases i.e. graphical, document store, column-oriented, key-value, and object-oriented databases (Sadalage & Fowler, 2012; Services, 2015). NoSQL databases have benefits as they provide a data model for applications that require a little code, less debugging, run on clusters, handle large scale data and evolve with time (Sadalage & Fowler, 2012).
    • Document store NoSQL databases, use a key/value pair that is the file/file itself, and it could be in JSON, BSON, or XML (Sadalage & Fowler, 2012; Services, 2015). These document files are hierarchical trees (Sadalage & Fowler, 2012). Some sample document databases consist of MongoDB and CouchDB.
    • Graph NoSQL databases are used drawing networks by showing the relationship between items in a graphical format that has been optimized for easy searching and editing (Services, 2015). Each item is considered a node and adding more nodes or relationships while traversing through them is made simpler through a graph database rather than a traditional database (Sadalage & Fowler, 2012). Some sample graph databases consist of Neo4j Pregel, etc. (Park et al., 2014).
    • Column-oriented databases are perfect for sparse datasets, ones with many null values and when columns do have data the related columns are grouped together (Services, 2015). Grouping demographic data like age, income, gender, marital status, sexual orientation, etc. are a great example for using this NoSQL database. Cassandra is an example of a column-oriented database.
  • Public cloud environments are where a supplier to a company provides a cluster or grid of servers through the internet like Spark AWS, EC2 (Connolly & Begg, 2014; Minelli et al. 2013).
  • A community cloud environment is a cloud that is shared exclusively by a set of companies that share the similar characteristics, compliance, security, jurisdiction, etc. (Connolly & Begg, 2014).
  • Private cloud environments have a similar infrastructure to a public cloud, but the infrastructure only holds the data one company exclusively, and its services are shared across the different business units of that one company (Connolly & Begg, 2014; Minelli et al., 2013).
  • Hybrid clouds are two or more cloud structures that have either a private, community or public aspect to them (Connolly & Begg, 2014).
  • Cloud computing allows for the company to purchase the services it needs, without having to purchase the infrastructure to support the services it might think it will need. This allows for hyper-scaling computing in a distributed environment, also known as hyper-scale cloud computing, where the volume and demand of data explode exponentially yet still be accommodated in public, community, private, or hybrid cloud in a cost efficiently (Mainstay, 2016; Minelli et al., 2013).
  • Building block system of big data analytics involves a few steps Burkle et al. (2001):
    • What is the purpose that the new data will and should serve
      • How many functions should it support
      • Marking which parts of that new data is needed for each function
    • Identify the tool needed to support the purpose of that new data
    • Create a top level architecture plan view
    • Building based on the plan but leaving room to pivot when needed
      • Modifications occur to allow for the final vision to be achieved given the conditions at the time of building the architecture.
      • Other modifications come under a closer inspection of certain components in the architecture

 

References

  • Angwin, J. (2014). Privacy tools: Opting out from data brokers. Pro Publica. Retrieved from https://www.propublica.org/article/privacy-tools-opting-out-from-data-brokers
  • Beckett, L. (2014). Everything we know about what data brokers know about you. Pro Publica. Retrieved from https://www.propublica.org/article/everything-we-know-about-what-data-brokers-know-about-you
  • Bhokare, P., Bhagwat, P., Bhise, P., Lalwani, V., & Mahajan, M. R. (2016). Private Cloud using GlusterFS and Docker.International Journal of Engineering Science5016.
  • Brookshear, G., & Brylow, D. (2014). Computer Science: An Overview, (12th). Pearson Learning Solutions. VitalBook file.
  • Burkle, T., Hain, T., Hossain, H., Dudeck, J., & Domann, E. (2001). Bioinformatics in medical practice: what is necessary for a hospital?. Studies in health technology and informatics, (2), 951-955.
  • Connolly, T., Begg, C. (2014). Database Systems: A Practical Approach to Design, Implementation, and Management, (6th). Pearson Learning Solutions. [Bookshelf Online].
  • Della Valle, E., Dell’Aglio, D., & Margara, A. (2016). Tutorial: Taming velocity and variety simultaneous big data and stream reasoning. Retrieved from https://pdfs.semanticscholar.org/1fdf/4d05ebb51193088afc7b63cf002f01325a90.pdf
  • Dietrich, D. (2013). The genesis of EMC’s data analytics lifecycle. Retrieved from https://infocus.emc.com/david_dietrich/the-genesis-of-emcs-data-analytics-lifecycle/
  • Eichhorn, G. (2014). Why exactly is data auditing important? Retrieved from http://www.realisedatasystems.com/why-exactly-is-data-auditing-important/
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37. Retrieved from: http://www.aaai.org/ojs/index.php/aimagazine/article/download/1230/1131/
  • Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: issues, challenges, tools and good practices. InContemporary Computing (IC3), 2013 Sixth International Conference on (pp. 404-409). IEEE.
  • Kishore, N. & Sharma, S. (2016). Secure data migration from enterprise to cloud storage – analytical survey. BIJIT-BVICAM’s Internal Journal of Information Technology. Retrieved from http://bvicam.ac.in/bijit/downloads/pdf/issue15/09.pdf
  • Long, J. C., Cunningham, F. C., & Braithwaite, J. (2013). Bridges, brokers and boundary spanners in collaborative networks: a systematic review.BMC health services research13(1), 158.
  • (2016). An economic study of the hyper-scale data center. Mainstay, LLC, Castle Rock, CO, the USA, Retrieved from http://cloudpages.ericsson.com/ transforming-the-economics-of-data-center
  • Minelli, M., Chambers, M., &, Dhiraj, A. (2013). Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today’s Businesses. John Wiley & Sons P&T. [Bookshelf Online].
  • Ovum (2016). 2017 Trends to watch: Big Data. Retrieved from http://info.ovum.com/uploads/files/2017_Trends_to_Watch_Big_Data.pdf
  • Park, Y., Shankar, M., Park, B. H., & Ghosh, J. (2014, March). Graph databases for large-scale healthcare systems: A framework for efficient data management and data services. In Data Engineering Workshops (ICDEW), 2014 IEEE 30th International Conference on (pp. 12-19). IEEE.
  • Ramachandran, M. & Chang, V. (2016). Toward validating cloud service providers using business process modeling and simulation. Retrieved from http://eprints.soton.ac.uk/390478/1/cloud_security_bpmn1%20paper%20_accepted.pdf
  • Richards, N. M., & King, J. H. (2014). Big Data Ethics. Wake Forest Law Review, 49, 393–432.
  • Sadalage, P. J., Fowler, M. (2012). NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, 1st Edition. [Bookshelf Online].
  • Services, E. E. (2015). Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, (1st). [Bookshelf Online].
  • Technopedia (n.d.). Data audit. Retrieved from https://www.techopedia.com/definition/28032/data-audit
  • Tsesis, A. (2014). The right to erasure: Privacy, data brokers, and the indefinite retention of data.Wake Forest L. Rev.49, 433.
  • Vardarlier, P., & Silahtaroglu, G. (2016). Gossip management at universities using big data warehouse model integrated with a decision support system. International Journal of Research in Business and Social Science, 5(1), 1–14. Doi: http://doi.org/10.1108/ 17506200710779521

Business Intelligence: Compelling Topics

Departments are currently organized in a silo. Thus, their information is in silo systems, which makes it difficult to leverage that information across the company.  When we employ a data warehouse, which is a central database that contains a collection of decision-related internal and external sources of data, it can aid in the data analysis for the entire company (Ahlemeyer-Stubbe & Coleman, 2014). When we build a multi-level Business Intelligence (BI) system on top of a centralized data warehouse, we no longer have silo data systems, and thus, can make a data-driven decision.  Thus, to support data-driven decision while moving away from a silo department kept data to a centralized data warehouse, Curry,  Hasan, and O’Riain (2012) created a system that shows results from the hospital centralized data warehouse at different levels of the company, as the organization level (stakeholders are executive members, shareholders, regulators, suppliers, consumers), the functional level (stakeholders are functional managers, organization manager), and the individual level (stakeholders are the employees).  Data may be centralized, but specialized permissions on data reports can exist on a multi-level system.

The types of data that exist and can be stored in a centralized data warehouse are: Real-time data: data that reveals events that are happening immediately, Lag information: information that explains events that have recently just happened; and Lead information: information that helps predict events into the future based off of lag data, like regression data, forecasting model output (based off of Laursen & Thorlund, 2010).  All with the goal of helping decision makers if certain Target Measures are met.  Target measures are used to improve marketing efforts through tracking measures like ROI, NVP, Revenue, lead generation, lag generations, growth rates, etc. (Liu, Laguna, Wright, & He, 2014).

Decision Support Systems (DSS) were created before BI strategies.  A DSS helps execute the project, expand the strategy, improve processes, and improves quality controls in a quickly and timely fashion.  Data warehouses’ main role is to support the DSS (Carter, Farmer, & Siegel, 2014).  Unfortunately, the talks above about data types and ways to store data to enable data-driven decisions it doesn’t explain the “how,” “what,” “when,” “where,” “who”, and “why.”  However, a strong BI strategy is imperative to making this all work.  A BI strategies can include, but is not limited to data extraction, data processing, data mining, data analysis, reporting, dashboards, performance management, actionable decisions, etc. (Fayyad, Piatetsky-Shapiro, & Smyth, 1996; Padhy, Mishra, & Panigrahi, 2012; McNurlin, Sprague,& Bui, 2008).  This definition along with the fact the DSS is 1/5 principles to BI suggest that DSS was created before BI and that BI is a more new and holistic view of data-driven decision making.

But, what can we do with a strong BI strategy? Well with a strong BI strategy we can increase a company’s revenue through Online profiling.  Online profiling is using a person’s online identity to collect information about them, their behaviors, their interactions, their tastes, etc. to drive a targeted advertising (McNurlin et al., 2008).  Unfortunately, the fear comes when the end-users don’t know what the data is currently being used for, what data do these companies or government have, etc.  Richards and King (2014) and McEwen, Boyer, and Sun (2013), expressed that it is the flow of information, and the lack of transparency is what feeds the fear of the public. McEwen et al. (2013) did express many possible solutions, one which could gain traction in this case is having the consumers (end-users) know what variables is being collected and have an opt-out feature, where a subset of those variables stay with them and does not get transmitted.

 

Reference:

  • Ahlemeyer-Stubbe, Andrea, Shirley Coleman. (2014). A Practical Guide to Data Mining for Business and Industry, 1st Edition. [VitalSource Bookshelf Online]. Retrieved from https://bookshelf.vitalsource.com/#/books/9781118981863/
  • Carter, K. B., Farmer, D., & Siegel, C. (2014-08-25). Actionable Intelligence: A Guide to Delivering Business Results with Big Data Fast!, 1st Edition. [VitalSource Bookshelf Online]. Retrieved from https://bookshelf.vitalsource.com/#/books/9781118920657/
  • Curry, E., Hasan, S., & O’Riain, S. (2012, October). Enterprise energy management using a linked dataspace for energy intelligence. In Sustainable Internet and ICT for Sustainability (SustainIT), 2012 (pp. 1-6). IEEE.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37. Retrieved from: http://www.aaai.org/ojs/index.php/aimagazine/article/download/1230/1131/
  • Laursen, G. H. N., & Thorlund, J. (2010) Business Analytics for Mangers: Taking Business Intelligence Beyond Reporting. Wiley & SAS Business Institute.
  • Liu, Y., Laguna, J., Wright, M., & He, H. (2014). Media mix modeling–A Monte Carlo simulation study. Journal of Marketing Analytics, 2(3), 173-186.
  • McEwen, J. E., Boyer, J. T., & Sun, K. Y. (2013). Evolving approaches to the ethical management of genomic data. Trends in Genetics, 29(6), 375-382.
  • McNurlin, B., Sprague, R., & Bui, T. (09/2008). Information Systems Management, 8th Edition. [VitalSource Bookshelf Online]. Retrieved from https://bookshelf.vitalsource.com/#/books/9781323134702/
  • Padhy, N., Mishra, D., & Panigrahi, R. (2012). The survey of data mining applications and feature scope. arXiv preprint arXiv:1211.5723.  Retrieved from: https://arxiv.org/ftp/arxiv/papers/1211/1211.5723.pdf
  • Richards, N. M., & King, J. H. (2014). Big data ethics. Wake Forest L. Rev., 49, 393

Big Data Analytics: Compelling Topics

Big Data and Hadoop:

According to Gray et al. (2005), traditional data management relies on arrays and tables in order to analyze objects, which can range from financial data, galaxies, proteins, events, spectra data, 2D weather, etc., but when it comes to N-dimensional arrays there is an “impedance mismatch” between the data and the database.    Big data, can be N-dimensional, which can also vary across time, i.e. text data (Gray et al., 2005). Big data, by its name, is voluminous. Thus, given the massive amounts of data in Big Data that needs to get processed, manipulated, and calculated upon, parallel processing and programming are there to use the benefits of distributed systems to get the job done (Minelli, Chambers, & Dhiraj, 2013).  Parallel processing allows making quick work on a big data set, because rather than having one processor doing all the work, you split up the task amongst many processors.

Hadoop’s Distributed File System (HFDS), breaks up big data into smaller blocks (IBM, n.d.), which can be aggregated like a set of Legos throughout a distributed database system. Data blocks are distributed across multiple servers. Hadoop is Java-based and pulls on the data that is stored on their distributed servers, to map key items/objects, and reduces the data to the query at hand (MapReduce function). Hadoop is built to deal with big data stored in the cloud.

Cloud Computing:

Clouds come in three different privacy flavors: Public (all customers and companies share the all same resources), Private (only one group of clients or company can use a particular cloud resources), and Hybrid (some aspects of the cloud are public while others are private depending on the data sensitivity.  Cloud technology encompasses Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).  These types of cloud differ in what the company managers on what is managed by the cloud provider (Lau, 2011).  Cloud differs from the conventional data centers where the company managed it all: application, data, O/S, virtualization, servers, storage, and networking.  Cloud is replacing the conventional data center because infrastructure costs are high.  For a company to be spending that much money on a conventional data center that will get outdated in 18 months (Moore’s law of technology), it’s just a constant sink in money.  Thus, outsourcing the data center infrastructure is the first step of company’s movement into the cloud.

Key Components to Success:

You need to have the buy-in of the leaders and employees when it comes to using big data analytics for predictive, prescriptive or descriptive purposes.  When it came to buy-in, Lt. Palmer had to nurture top-down support as well as buy-in from the bottom-up (ranks).  It was much harder to get buy-in from more experienced detectives, who feel that the introduction of tools like analytics, is a way to tell them to give up their long-standing practices and even replace them.  So, Lt. Palmer had sold Blue PALMS as “What’s worked best for us is proving [the value of Blue PALMS] one case at a time, and stressing that it’s a tool, that it’s a compliment to their skills and experience, not a substitute”.  Lt. Palmer got buy-in from a senior and well-respected officer, by helping him solve a case.  The senior officer had a suspect in mind, and after feeding in the data, the tool was able to predict 20 people that could have done it in an order of most likely.  The suspect was on the top five, and when apprehended, the suspect confessed.  Doing, this case by case has built the trust amongst veteran officers and thus eventually got their buy in.

Applications of Big Data Analytics:

A result of Big Data Analytics is online profiling.  Online profiling is using a person’s online identity to collect information about them, their behaviors, their interactions, their tastes, etc. to drive a targeted advertising (McNurlin et al., 2008).  Profiling has its roots in third party cookies and profiling has now evolved to include 40 different variables that are collected from the consumer (Pophal, 2014).  Online profiling allows for marketers to send personalized and “perfect” advertisements to the consumer, instantly.

Moving from online profiling to studying social media, He, Zha, and Li (2013) stated their theory, that with higher positive customer engagement, customers can become brand advocates, which increases their brand loyalty and push referrals to their friends, and approximately 1/3 people followed a friend’s referral if done through social media. This insight came through analyzing the social media data from Pizza Hut, Dominos and Papa Johns, as they aim to control more of the market share to increase their revenue.  But, is this aiding in protecting people’s privacy when we analyze their social media content when they interact with a company?

HIPAA described how we should conduct de-identification of 18 identifiers/variables that would help protect people from ethical issues that could arise from big data.   HIPAA legislation is not standardized for all big data applications/cases; it is good practice. However, HIPAA legislation is mostly concerned with the health care industry, listing those 18 identifiers that have to be de-identified: Names, Geographic data, Dates, Telephone Numbers, VIN, Fax, Device ID and serial numbers, emails addresses, URLs, SSN, IP address, Medical Record Numbers, Biometric ID (fingerprints, iris scans, voice prints, etc), full face photos, health plan beneficiary numbers, account numbers, any other unique ID number (characteristic, codes, etc), and certifications/license numbers (HHS, n.d.).  We must be aware that HIPAA compliance is more a feature of the data collector and data owner than the cloud provider.

HIPAA arose from the human genome project 25 years ago, where they were trying to sequence its first 3B base pair of the human genome over a 13 year period (Green, Watson, & Collins, 2015).  This 3B base pair is about 100 GB uncompressed and by 2011, 13 quadrillion bases were sequenced (O’Driscoll et al., 2013). Studying genomic data comes with a whole host of ethical issues.  Some of those were addressed by the HIPPA legislation while other issues are left unresolved today.

One of the ethical issues that arose were mentioned in McEwen et al. (2013), for people who have submitted their genomic data 25 years ago can that data be used today in other studies? What about if it was used to help the participants of 25 years ago to take preventative measures for adverse health conditions?  However, ethical issues extend beyond privacy and compliance.  McEwen et al. (2013) warn that data has been collected for 25 years, and what if data from 20 years ago provides data that a participant can suffer an adverse health condition that could be preventable.  What is the duty of the researchers today to that participant?

Resources:

Big Data Analytics: POTUS Report

The aims of big data analytics are for data scientist to fuse data from various data sources, various data types, and in huge amounts so that the data scientist could find relationships, identify patterns, and find anomalies.  Big data analytics can help provide either a descriptive, prescriptive, or predictive result to a specific research question.  Big data analytics isn’t perfect, and sometimes the results are not significant, and we must realize that correlation is not causation.  Regardless, there are a ton of benefits from big data analytics, and this is a field where policy has yet to catch up to the field to protect the nation from potential downsides while still promoting and maximizing benefits.

Policies for maximizing benefits while minimizing risk in public and private sector

In the private sector, companies can create detailed personal profiles will enable personalized services from a company to a consumer.  Interpreting personal profile data would allow a company to retain and command more of the market share, but it can also leave room for discrimination in pricing, services quality/type, and opportunities through “filter bubbles” (Podesta, Pritzker, Moniz, Holdren, & Zients, 2014).  Policy recommendation should help to encourage de-identifying personally identifiable information to a point that it would not lead to re-identification of the data. Current policies for the private sector for promoting privacy are (Podesta, et al., 2014):

  • Fair Credit Reporting Act, helps to promote fairness and privacy of credit and insurance information
  • Health insurance Portability and Accountably Act enables people to understand and control how personal health data is used
  • Gramm-Leach-Bliley Act, helps consumers of financial services have privacy
  • Children’s Online Privacy Protection Act minimizes the collection/use of children data under the age of 13
  • Consumer Privacy bill of rights is a privacy blueprint that aids in allowing people to understand what their personal data is being collected and used for that are consistent with their expectation.

In the public sector, we run into issues, when the government has collected information about their citizens for one purpose, to eventually, use that same citizen data for a different purpose (Podesta, et al., 2014).  This has the potential of the government to exert power eventually over certain types of citizens and tamper civil rights progress in the future.  Current policies in the public sector are (Podesta, et al., 2014):

  • The Affordable Care Act allows for building a better health care system from a “fee-for-service” program to a “fee-for-better-outcomes.” This has allowed for the use of big data analytics to promote preventative care rather than emergency care while reducing the use of that data to eliminate health care coverage for “pre-existing health conditions.”
  • The Family Education Rights and Privacy Act, the Protection of Pupil Rights Amendment and the Children’s Online Privacy Act help seal children educational records to prevent misuse of that data.

Identifying opportunities for big data in the economy, health, education, safety, energy-efficiency

In the economy, the use of the internet of things to equip parts of product with sensors to help monitor and transmit live, thousands of data points for sending alerts.  These alerts can tell us when maintenance is needed, for which part and where it is located, making the entire process save time and improving overall safety(Podesta, et al., 2014).

In medicine, the use of predictive analytics could be used to identify instances of insurance fraud, waste, and abuse, in real time saving more than $115M per year (Podesta, et al., 2014).  Another instance of using big data is for studying neonatal intensive care, to help use current data to create prescriptive results to determine which newborns are likely to come into contact with which infection and what would that outcome be (Podesta, et al., 2014).  Monitoring newborn’s heart rate and temperature along with other health indicators can alert doctors of an onset of an infection, to prevent it from getting out of hand. Huge amounts of genetic data sets are helping locate genetic variant to certain types of genetic diseases that were once hidden in our genetic code (Podesta, et al., 2014).

With regards to national safety and foreign interests, data scientist and data visualizers have been using data gathered by the military, to help commanders solve real operational challenges in the battlefield (Podesta, et al., 2014).  Using big data analytics on satellite data, surveillance data, and traffic flow data through roads, are making it easier to detect, obtain, and properly dispose of improvised explosive devices (IEDs).  The Department of Homeland Security is aiming to use big data analytics to identify threats as they enter the country and people of higher than the normal probability to conduct acts of violence within the country (Podesta, et al., 2014). Another safety-related used of big data analytics is the identification of human trafficking networks through analyzing the “deep web” (Podesta, et al., 2014).

Finally for energy-efficiency, understanding weather patterns and climate change, can help us understand our contribution to climate change based on our use of energy and natural resources. Analyzing traffic data, we can help improve energy efficiency and public safety in our current lighting infrastructure by dimming lights at appropriate times (Podesta, et al., 2014).  Energy efficiencies can be maximized within companies using big data analytics to control their direct, and indirect energy uses (through maximizing supply chains and monitoring equipment).  Another way we are moving to a more energy efficient future is when the government is partnering with the electric utility companies to provide businesses and families access to their personal energy usage in an easy to digest manner to allow people and companies make changes in their current consumption levels (Podesta, et al., 2014).

Protecting your own privacy outside of policy recommendation

In this report it is suggested that we can control our own privacy through using the browse in private function in most current internet browsers, this would help prevent the collection of personal data (Podesta, et al., 2014). But, this private browsing varies from internet browser to internet browser.  For important information like being denied employment, credit or insurance, consumers should be empowered to know why they were denied and should ask for that information (Podesta, et al., 2014).  Find out the reason why can allow people to address those issues in order to persevere in the future.  We can encrypt our communications as well, in order to protect our privacy, with the highest bit protection available.  We need to educate ourselves on how we should protect our personal data, digital literacy, and know how big data could be used and abused (Podesta, et al., 2014).  While we wait for currently policies to catch up with the time, we actually have more power on our own data and privacy than we know.

 

Reference:

Podesta, J., Pritzker, P., Moniz, E. J., Holdren, J. & Zients,  J. (2014). Big Data: Seizing Opportunities, Preserving Values.  Executive Office of the President. Retrieved from https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf

Big Data Analytics: Privacy & HIPAA

Since its inception 25 years ago, the human genome project has been sequenced many 3B base pair of the human genomes (Green, Watson, & Collins, 2015).  This project has given rise of a new program, the Ethical, Legal and Social Implication (ELSI) project.  ELSI got 5% of the National Institute of Health Budget, to study ethical implications of this data, opening up a new field of study (Green et al., 2015 & O’Driscoll, Daugelaite, & Sleator, 2013).  Data sharing must occur, to leverage the benefits of the genome projects and others like it.  Poldrak and Gorgolewski (2014) stated that the goals of sharing data help out with the advancement of the field in a few ways: maximizing the contribution of research subjects, enabling responses to new questions, enabling the generation of new questions, enhance research results reproducibility (especially when the data and software used are combined), test bed for new big data analysis methods, improving research practices (development of a standard of ethics), reducing the cost of doing the science (what is feasible for one scientist to do), and protecting valuable scientific resources (via indirectly creating a redundant backup for disaster recovery).  Allowing for data sharing of genomic data can present ethical challenges, yet allow for multiple countries and disciplines to come together and analyze data sets to come up with new insights (Green et al., 2015).

Richards and King (2014), state that concerning privacy, we must think of it regarding the flow of personal information.  Privacy cannot be thought of as a binary, as data is private and public, but within a spectrum.  Richards and Kings (2014) argue that the data as exchanged between two people has a certain level of expectation of privacy and that data can remain confidential, but there is never a case were data is in absolute private or public.  Not everyone in the world would know or care about every single data point, nor will any data point be kept permanently secret if it is uttered out loud from the source.  Thus, Richards and Kings (2014) stated that transparency can help prevent abuse of the data flow.  That is why McEwen, Boyer, and Sun (2013) discussed that there could exist options for open-consent (your data can be used for any other future research project), broad-consent (describe various ways the data could be used, but it is not universal), or an opt-out-consent (where participants can say what their data shouldn’t be used for).

Attempts are being made through the enactment of Genetic Information Nondiscrimination Act (GINA) to protect identifying data for fears that it can be used to discriminate against a person with a certain type of genomic indicator (McEwen et al., 2013).  Internal Review Boards and Common Rules, with the Office of Human Research Protection (OHRP), have guidance on information flow that is de-identified.  De-identified information can be shared and is valid under current Health Insurance Portability and Accounting Act of 1996 (HIPAA) rules (McEwen et al, 2013).  However, fear of loss of data flow control comes from increase advances in technological decryption and de-anonymisation techniques (O’Driscoll et al., 2013 and McEwen et al., 2013).

Data must be seen and recognized as a person’s identity, which can be defined as the “ability of individuals to define who they are” (Richards & Kings, 2014). Thus, the assertion made in O’Driscoll et al. (2013) about how the ability to protect medical data, with respects to bid data and changing concept, definitional and legal landscape of privacy is valid.  Thanks to HIPAA, cloud computing, is currently on a watch list. Cloud computing can provide a lot of opportunity for cost savings. However, Amazon cloud computing is not HIPAA compliant, hybrid clouds could become HIPAA, and commercial cloud options like GenomeQuest and DNANexus are HIPAA compliant (O’Driscoll et al., 2013).

However, ethical issues extend beyond privacy and compliance.  McEwen et al. (2013) warn that data has been collected for 25 years, and what if data from 20 years ago provides data that a participant can suffer an adverse health condition that could be preventable.  What is the duty of the researchers today to that participant?  How far back in years should that go through?

Other ethical issues to consider: When it comes to data sharing, how should the researchers who collected the data, but didn’t analyze it should be positively incentivized?  One way is to make them co-author of any publication revolving their data, but then that makes it incompatible with standards of authorships (Poldrack & Gorgolewski, 2013).

 

Resources:

  • Green, E. D., Watson, J. D., & Collins, F. S. (2015). Twenty-five years of big biology. Nature, 526.
  • McEwen, J. E., Boyer, J. T., & Sun, K. Y. (2013). Evolving approaches to the ethical management of genomic data. Trends in Genetics, 29(6), 375-382.
  • Poldrack, R. A., & Gorgolewski, K. J. (2014). Making big data open: data sharing in neuroimaging. Nature Neuroscience, 17(11), 1510-1517
  • O’Driscoll, A., Daugelaite, J., & Sleator, R. D. (2013). ‘Big data,’ Hadoop and cloud computing in genomics. Journal of biomedical informatics, 46(5), 774-781.
  • Richards, N. M., & King, J. H. (2014). Big data ethics. Wake Forest L. Rev., 49, 393.